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Vibration reduction, stability and resonance of a 
dynamical system excited by external and 

parametric excitations via time-delay absorber 
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Abstract—Vibrations and dynamic chaos are undesired phenomenon in structures as they cause the 4D. They are: disturbance, 
discomfort, damage and destruction of the system or the structure. For these reasons, money, time and effort are spent to eliminate or 
control vibrations, noise and chaos or to minimize them. Vibration control is classified into two main categories: passive control and active 
control.  In this paper, the analytical solution of the nonlinear dynamical system using multiple time scale method up to and including 
second order approximations are obtained. All resonance cases from analytical solution are extracted. The numerical solution of the non-
linear dynamical system using Runge-Kutta method of order four are obtained. The stability of the dynamical system at the worst 
resonance case is studied. The behaviors of the system at different values of excitations are investigated. The effects of various 
parameters on the behavior of the system are studied. Comparison with the available published work is reported.  

Index Terms— Vibration, Resonance, Time-delay, Stability. 

——————————      —————————— 

1 INTRODUCTION                                                                     
ibrations and dynamic chaos are undesired phenomenon 
in structures as they cause the 4D. They are: disturbance, 

discomfort, damage and destruction of the system or the struc-
ture. For these reasons, money, time and effort are spent to 
eliminate or control vibrations, noise and chaos or to minimize 
them. Structures and mechanical systems should be designed 
to enable better performance under different types of loading, 
particularly dynamic and transient loads. Vibration control is 
classified into two main categories: passive control and active 
control. The study of vibrating structures has been a subject of 
a particular interest in recent years. This is due to the fact that 
structures under multi-parametric excitation forces appear in 
various fields of fundamental and applied sciences [1-2]. An-
other way to control the bending vibration of the beam struc-
ture, is to couple it in a sandwich manner to a linear beam-
type dynamic vibration absorber as in ref [3- 4]. In ref [5] the 
authors used the nonlinearity of a foundation and showed  

that the behavior of the beam could be expressed by a 6φ  po-
tential. Another important center of interest is the study of  
 

 
vibrating structures under active control [6-9]. In ref [10], the 

authors considered such a problem in linear structures and 
showed that time-delay can even lead to the instability of the 
whole structure. Nana et al. [11-13] studied the modeling and 
 optimal active control with time delay dynamics of a strongly 
nonlinear beam. The control by sandwich beam and the one 
using piezoelectric absorber are investigated. El-Ganaini and 
Elgohary studied the vibration of a damped buckled beam 
subject to multi-external excitation [14] and multi-parametric 
excitation forces [15]. The model is represented by two-degree-
of-freedom system consisting of the main system and the ab-
sorber. The stability of the system is investigated numerically 
applying both phase-plane and frequency response functions. 
Eissa et al. [16] investigated the effects of saturation phenome-
na on non-linear oscillating systems subject to multi-
parametric and/or external excitations. They reported the oc-
currence of saturation phenomena at different parameters val-
ues. Eissa and Sayed [17-19] and Sayed [20], studied the effects 
of different active controllers on simple and spring pendulum 
at the primary resonance via negative velocity feedback or its 
square or cubic. Amer et al. [21], studied the dynamical system 
of a twin-tail aircraft, which is described by two coupled se-
cond order nonlinear differential equations having both quad-
ratic and cubic nonlinearities, solved and controlled. Sayed 
and Kamel [22, 23] investigated the effect of different control-
lers on the vibrating system and the saturation control of a 
linear absorber to reduce vibrations due to rotor blade flap-
ping motion. Sayed et al. [24] investigated the non-linear dy-
namics of a two-degree-of freedom vibration system including 
quadratic and cubic non-linearities subjected to external and 
parametric excitation forces.  

2 MATHEMATICAL MODELING 
The proposed modified model [14, 15] governing equations of 
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the considered dynamical system under investigation are giv-
en by equations:  

2 2 3 5
1 1 1 1 1 1 1 2 1 3 1 2( )u u u u u u u+ ω + µ + α + α + α + α −β             

2 1 1 1 2 2cos( ) cos( )u F t u F t−α = Ω + Ω                          (1) 

2 2
2 2 2 2 2 4 2( )u u u u+ ω + µ + µα + α                                                           

1 1 1 2( ) ( )u t u t= µβ − t + µα − t                                     (2) 

where 1 1 1, ,u u u   are the displacement, velocity and accelera-

tion of the beam respectively and 2 2 2, ,u u u   are the displace-

ment, velocity and acceleration of the absorber, 1µ and 2µ  are 
the non-dimensionless damping coefficients of the two modes  
respectively, α and β  are the non-dimensionless control gain 
parameters, 1 2,ω ω are natural frequencies and 

1 2,F F  are the 
external and parametric excitation forces respectively and 

1 2,Ω Ω  are the external and parametric frequencies respec-
tively, 1 2 3, ,α α α  and 4 ,α µ are the other characteristic coeffi-

cient of the structure and control respectively, 1τ and 2τ are 
the time delay for the displacement and velocity feedback of 
the system respectively.  

2.1. PERTURBATION ANALYSIS 
            Multiple scale perturbation method [25] is conducted to 
obtain first order approximate solutions for Eqs. (1)-(2). As-
suming the solution in the form: 

1 10 0 1 11 0 1( ; ) ( , ) ( , )u t u T T u T Tε = + ε                                    (3)     

     2 20 0 1 21 0 1( ; ) ( , ) ( , )u t u T T u T Tε = + ε                                    (4) 
  The time derivatives are given by: 

0 1
d D D
dt

≡ + ε   ,                    
2

2
0 0 12 2d D D D

dt
≡ + ε                       (5) 

where ( 0,1).n
nT t n= ε =  0T  and 1T are the fast and slow 

time scales respectively. To make damping, nonlinearities, 
primary resonance force, principle parametric resonance force 
and controller parameters appear in the same perturbation 
equations we scale the equation parameters as: 

1 1 2 2
ˆˆ ˆˆ ˆ, , , , ,n nµ = εµ µ = εµ α = εα β = εβ α = εα                   

1 1 2 2
ˆ ˆ, , 1, 2,3, 4F F F F n=ε = ε =                                             (6) 

Substituting Eqs. (3)-(6) into Eqs. (1)-(2) and equating the coef-
ficients of the same power of ε in both sides, we obtain: 

0( ) :O ε  
2 2
0 1 10( ) 0D u+ ω =                                                                     (7) 

2 2
0 2 20( ) 0D u+ ω =                                                                   (8)  

1( ) :O ε  
2 2 2
0 1 11 0 1 10 1 0 10 1 10ˆ ˆˆ( ) 2 ( )D u D D u D u u+ ω = − − µ + α − α   

                               3 5
2 10 3 10 20 0 20

ˆˆ ˆ ˆu u u D u−α − α + β + α                             

1 1 0 10 2 2 0
ˆ ˆcos( ) cos( )F T u F T+ Ω + Ω           (9) 

2 2
0 2 21 0 1 20 2 0 20ˆˆ( ) 2 ( )D u D D u D u+ ω = − − µ + µα               

1 2

2
4 20 10 0 10

ˆˆ ˆu u D uττ −α + µβ + µα        (10) 

The solution of Eqs. (7) and (8)  can be expressed in the form: 

10 1 1 0exp( )u A i T cc= ω +                                                       (11) 

20 2 2 0exp( )u A i T cc= ω +                                                      (12)                                                        

where 1A and 2A are a complex functions in 1T  and cc indi-

cates the complex conjugates of the preceding terms. Substitut-
ing Eqs. (11)-(12) into Eqs. (9)-(10) and after eliminating the 
secular terms, the non-homogeneous solutions of Eqs. (9)-(10) 
are: 

11 1 1 0 2 1 0 3 1 0

4 2 0 5 1 0 6 2 1 0

exp (2 ) exp (3 ) exp (5 )
exp ( ) exp( ) exp ( ( ) )

u E i T E i T E i T
E i T E i T E i T

= ω + ω + ω
+ ω + Ω + Ω + ω

   

7 2 1 0 8exp ( ( ) )E i T E cc+ Ω − ω + +                             (13)                                      

21 9 1 0 1 10 1 0 2exp ( ( )) exp ( ( ))u E i T E i T= ω − τ + ω − τ                     

11 2 0 12exp (2 )E i T E cc+ ω + +                                       (14) 

where ( 1, 2,...,12)iE i =  are complex functions in 1T . From 

the above derived solutions, the reported resonance cases are: 

Primary resonance: 1 1Ω ≅ ω . 

Sub-harmonic resonance: 2 12Ω ≅ ω . 

Internal or secondary resonance: 1 2ω ≅ ω . 

Simultaneous or incident resonance 
Any combination of the above resonance cases is considered 
as simultaneous resonance. 

3. STABILITY OF THE SYSTEM  
 Investigating numerically these resonance cases showed that 
the worst one is the simultaneous primary and principle par-
ametric in the presence of internal resonance case, which is 
given by 1 1 2 1, 2Ω ≅ ω Ω ≅ ω and 1 2ω ≅ ω . Introducing the ex-

ternal and internal detuning parameters 1 2,σ σ  and 3σ  to 

convert the small-divisor terms into the secular terms, accord-
ing to: 

1 1 1 1 1 2 1 2 1 2ˆ ˆ, 2 2Ω = ω + σ = ω + εσ Ω = ω + σ = ω + εσ , 

1 2 3 2 3ˆω = ω + σ = ω + εσ                                            (15) 
Substituting Eq. (15) into Eqs. (9)-(10) and eliminating the sec-
ular terms, leads to the solvability conditions : 

2 3 2
1 1 1 1 1 1 2 1 1 3 1 1

2 2 3 1 1 1 1

ˆ ˆ ˆˆ2 ( ) 3 10
ˆ ˆˆ ˆ ˆ( ) exp( ) ( / 2)exp( )

i D A i A A A A A

i A i T F i T

ω = − ω µ + α − α − α

+ β + ω α − σ + σ
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2 1 2 1
ˆ ˆ( / 2)exp( )F A i T+ σ                           (16) 

2 1 2 2 2 2 1 3 1 1 1
ˆˆˆ ˆ2 ( ) exp( ( ))i D A i A A i Tω = − ω µ + µα + µβ σ − ω τ        

1 1 3 1 1 2ˆ ˆexp( ( ))i A i T+ µαω σ − ω τ                     (17) 

Using the polar form  

      ( / 2) ( 1,2)n
n n

iA a e n= =γ                (18)  

where na  and nγ  are the steady state amplitudes and phases 

of the motion respectively. Substituting Eq. (18) into Eqs. (16) 
and (17) and separating real and imaginary parts yields. 
Then it follows that the steady state solutions are given by 

1 2
1 2 3 2 3

1 1

1 2
1 1 2

1 1

( ) sin cos
2 2 2

sin sin 0
2 4

a a a

F F a

µ + a ω aβ
− − θ + θ

ω ω

+ θ + θ =
ω ω

               (19)                          

3 532
1 1 1 2 3

1 1 1

2 1 2
2 3 1 1 2

1 1 1

53 cos
8 16 2

sin cos cos 0
2 2 4

a a a a

F Fa a

aa β
s − − + θ

ω ω ω
ω a

+ θ + θ + θ =
ω ω ω

       (20)           

2 1
2 1 3 1 2

2

1 3 1 1
2

( ) cos( )
2 2

sin( ) 0
2

a a

a

µ + µa µaω
− + θ − ω τ

ω
µβ

+ θ − ω τ =
ω

            (21)                            

2 3 1 3 1 1
2

1
1 3 1 2

2

( ) cos( )
2

sin( ) 0
2

a a

a

µβ
s + s + θ − ω τ

ω
µaω

− θ − ω τ =
ω

                                (22)                                        

4. RESULTS AND DISCUSSIONS 
Results are presented in graphical forms as steady state ampli-
tudes against detuning parameters and as time history or the 
response for both structure and controller. Fig. 1 shows that 
the steady state amplitude of the structure without controller 
at simultaneous primary and principle parametric resonance 
where 1 1 2 1, 2Ω ≅ ω Ω ≅ ω  is about twelve times that of the 

maximum excitation amplitude F1, the solution is stable with 
multi-limit cycle. 

 

Fig. 1. System behavior without controller at simultaneous 
primary and principle parametric resonance  

1 1 2 1, 2Ω ≅ ω Ω ≅ ω . 

 
Fig.2. System behavior with controller at resonance                     

                            1 1 2 1 1 2, 2 , .Ω ≅ ω Ω ≅ ω ω ≅ ω  
1 1 2

3 1 2 1

0.009, 0.0001, 0.08, 0.013,
0.0008, 0.4, 0.2, 2,F F

µ = α = α = α =
α = − = = ω =

2 40.07, 0.02, 0.6, 0.5,µ = α = µ = β =   

Fig. 2 shows that the steady state amplitude of the system with 
absorber at the simultaneous resonance 1 1 2 1, 2Ω ≅ ω Ω ≅ ω  

and 2 1ω ≅ ω . It can be seen for the main system that the 

steady state amplitude is 0.94%, but the steady state amplitude 
of the controller is about 200% of excitation amplitude FR1R. This 
means that the effectiveness of the controller aE  ( aE = the 

steady state amplitude of the main system without absorber/ 
the steady state amplitude of main system with absorber) is 
about 14. Also, the oscillations of the system and controller 
have multi-limit cycle and limit cycle respectively. 
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Fig.3. Effects of the detuning parameter 1σ .            

 
Fig.3, shows that the steady state amplitudes of the system 
against the detuning parameter 1σ  as a basic case. In this fig-

ure, the response amplitude consists of a continuous curve 
which is bent to the left and has softening spring type and 
there exists jump phenomena. This continuous curve has sta-
ble and unstable solutions. For positive and negative value of 
the nonlinear parameter, 3α , the curve is bent to right or left 

leading to the occurrence of the jump phenomena and multi-
valued amplitudes produce either soft or hard spring respec-
tively as shown in Fig. 4. Fig. 5, shows that the steady state 
amplitude of the system is a monotonic increasing function in 
the excitation amplitude FR1R.  
 

 
Fig. 4. Effects of the nonlinear parameter 3α . 

 
Fig. 5. Effects of the excitation amplitude FR1R. 

4.1. COMPARISON STUDY 
In the previous work [14, 15], studied the same system when 
subjected to multi-external [14] or multi-parametric [15]. 
In our study, the response and stability of the system under 
external and parametric excitation forces are investigated us-
ing the multiple time scale method. The second-order approx-
imation is obtained to consider the influence of the quadratic 
and cubic terms on non-linear dynamic characteristics of the 
system. All possible resonance cases are extracted and investi-
gated at this approximation order. The case of simultaneous 
primary and principle parametric resonance in the presence of 
1:1 internal resonance is considered. The stability of the sys-
tem is investigated using both frequency response equations 
and phase-plane method. It is quite clear that some of the sim-
ultaneous primary resonance cases are undesirable in the de-
sign of such system as they represent some of the worst behav-
ior of the system.   

5. CONCLUSIONS 
The nonlinear response of a system subjected to external and 
parametric excitations have been studied. The problem is de-
scribed by a two-degree-of-freedom system of nonlinear ordi-
nary differential equations. The case of simultaneous primary 
and principle parametric resonance in the presence of one-to-
one internal resonance is studied by applying multiple time 
scale perturbation method using a second-order approxima-
tion. Both the frequency response equations and the phase-
plane technique are applied to study the stability of the sys-
tem. The effect of the different parameters of the system is 
studied numerically. From the above study the following may 
be concluded: 
1- The simultaneous resonance case 1 1 2 1, 2Ω ≅ ω Ω ≅ ω  is the 

worst cases and it should be avoided in design.  
2- For positive and negative values of the nonlinear parame-
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ters 3α , the curves are bent to right or left leading to the oc-

currence of the jump phenomena and multi-valued ampli-
tudes produce either hard or soft spring respectively. 
3-The steady state amplitude of the system are a monotonic 
increasing function in the excitation amplitude F1. 
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